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Abstract Analytic evaluation of the dynamic (thermally smeared) molecular electron
density (ED) is described within the LCAO-MO and harmonic-convolution approxi-
mations. The key step is to assign vibration probability density functions (PDFs) to the
two-center products of Gaussian basis functions used in quantum chemical models, if
the PDFs of the nuclear centers are known. Based on internal modes of vibrations of
small molecules it is demonstrated how the convoluted ED relates to the stationary (sta-
tic) ED, as well as to that of the average over an ensemble of static EDs calculated for
near-equilibrium nuclear geometries using clamped Hamiltonians. The overall effect
of neglecting correlated nuclear motions on the convoluted ED is also illuminated.

Keywords Electron density · Convolution · Mean square displacement amplitudes ·
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1 Introduction

Analysis of high-resolution single-crystal X-ray diffraction data has become a routine
procedure to elucidate the ED of solids [1,2]. This experimental route is considered
by many investigators to be complementary or even alternative to the theoretical one
offered by computational quantum chemistry, despite the vague link between the mod-
els as well as the driving principles utilized in the two methods. Nevertheless, for the
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lion’s share of experimental reports the focus has chiefly been on validation of the
results accomplished by comparing theoretical and experimental EDs, commonly in
terms of Bond critical point (BCP) properties [3]. This collation is conceivable in
two substantially different ways. In the usual course of modern X-ray studies an ana-
lytic Structure factor (SF) model (dominantly the rigid pseudoatom model [4,5]) is
called upon that explicitly accounts for thermal smearing (density deformation due
to nuclear vibrations) and whose static and dynamic parameters are jointly adjusted
to the observed data using the standard Least-squares (LS) protocol. Such a fitting
procedure allows for a technically straightforward and apparently satisfactory, yet
intractable decoupling of thermal smearing effects from bonding effects [6,7]. In
other words, the ‘experimental’ static ED and the Anisotropic displacement parame-
ters (ADPs) obtained through such an analysis is unavoidably biased due to the failure
of the applied scattering formalism to explicitly and adequately account for the physics
underlying the coupling between electronic and nuclear motion.

A far less common method nowadays, but critically reflected on by the pioneers of
the field [8,9], is to evaluate the vibration average of the theoretical ED using experi-
mental ADPs. These efforts have been hampered by a number of issues/uncertainties;
(a) the experimental ADPs have a limited physical significance, not only for the above
mentioned reason, but also because these parameters are likely to absorb system-
atic errors and are affected by disorders (static and dynamic structural fluctuations);
(b) internuclear correlations (vibration couplings) are not accessible from Bragg dif-
fraction; (c) the lack of rigorous treatment of the vibration smearing of internuclear
(two-center) density units. The latest issue, the subject of this paper, has been an indis-
putable source of bias in density matrix fitting [10–12] and wave function supported
refinements (two-center ED models) of X-ray data [13].

It is to be emphasized that both approaches (that is, decoupling the thermal motion
from the experimental ED or smearing the theoretical ED) rely on the harmonic-
convolution approximation which is at the heart of modeling coherent elastic diffrac-
tion [14], but fails to comply with the Born–Oppenheimer approximation [15], which,
on the other hand, is at the heart of molecular quantum chemistry. This contradiction
provokes the plain questions; are the theoretical and ‘experimental’ EDs comparable
at all and what can we reasonably expect to learn from their agreement/disagreement
after all?

Assessment of the convolution approximation has been the subject matter of com-
putational studies on small molecules [16,17] as well as temperature dependent dif-
fraction analyses [18,19]. The temperature independence of experimental static BCP
properties has often been used to infer the ‘thermal-decoupling capability’ of a scat-
tering/static ED model used for the analysis of the diffraction data [20].

In this study we evaluate the theoretical dynamic molecular ED derived as the
exact convolution of the nuclear PDF for harmonic internal vibrations with the static
molecular ED given within the Linear combination of atomic orbitals molecular orbital
(LCAO-MO) formalism in terms of Gaussian basis functions. The convoluted dynamic
ED is compared with the mean ED obtained within the adiabatic approximation [21] as
the average over a large number of static EDs corresponding to nuclear configurations
consistent with harmonic vibrations. Both the electronic and nuclear distributions are
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derived according to standard computational chemistry protocols with the aid of the
Gaussian09 program suite [22] and locally developed computer codes [23].

2 The convolution approximation

The key property for interpreting X-ray Bragg scattering is the coherent elastic SF, the
Fourier transform of the thermal average (T-dependent canonical ensemble average
over vibration states) of the crystalline ED (referred here as the dynamic ED):

〈ρ〉T =
∑

n

wnρn (1)

where wn and ρn is the Boltzmann factor and ED, respectively, associated with the nth
state of the system in thermal equilibrium with its surrounding. To reduce this expres-
sion to a closed analytic form applicable to SF data fitting, the harmonic convolution
approximation is invoked which includes a hierarchy of approximations [24]: (a) the
states accessible by the system (molecule or crystal) are restricted to vibration states
(no electronic transition occurs during scattering); (b) the adiabatic approximation
that implicitly assumes the physical observability of the stationary ED corresponding
to the equilibrium nuclear geometry (represented hereafter by a 3N -row-vector R0

for N nuclei); (c) the stationary ED is supposed to be expressed as a superposition of
partial distributions each assigned to a specific center; (d) even less feasibly, each such
density unit is defined to rigidly follow the motion of its center as the nuclei vibrate
about their equilibrium positions in a harmonic potential.

The normal mode analysis of the system of N vibrating nuclei in thermal equilib-
rium leads to a 3N -multivariate normal distribution of nuclear displacements relative
to their equilibrium positions (u = R − R0):

P (u) = (2π)
−3N

2 |U|− 1
2 Exp

[
−1

2
uU−1ū

]
(2)

where ū denotes the transpose of u and the covariance matrix is the Mean square
displacement amplitude (MSDA) matrix (U) associated with the expectation values
of Cartesian nuclear displacement products (second moments):

U = 〈ūu〉T (3)

The temperature dependence of U is embedded in the MSDAs of the normal modes,
since for the eigenvalues (δ = (δi=1,3N )):

U = LδL̄ (4)

δ j = h

8π2ν j
coth

(
hν j

2kB T

)
(5)

where ν j is the frequency of the j th normal mode [25,26].
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In the simplest versions of the Bragg SF formalism, that relies on the one-center ED
models (such as the conventional isolated-atom or the pseudoatom; nucleus-centered
multipole expansion [4,5]), the correlations between nuclear vibrations are ignored.
In other words, the density units centered on a given nucleus (ρa (ra) , ra = r − Ra)

are smeared (convoluted) by a trivariate normal distribution of that nuclear center
(marginal PDF; Pa). This means that the 3N multivariable normal distribution is
taken as a product of N trivariate normal distributions, giving rise to the smeared ED

〈ρ(r)〉T =
∑

a

∫ ∞

−∞
ρa (ra − u) Pa (u) du (6)

Note that the Fourier transform of a marginal PDF (Pa) is the Debye–Waller (DW)
factor routinely used in scattering models to dampen the scattering power of an atom
due to nuclear vibrations [27,28].

If the convolution approximation is to be applied to the ED within the LCAO-MO
approach, new considerations arise because it is not immediately apparent how to cal-
culate the ADPs of non-nuclear sites at which two-center orbital products are centered.
Approximations of practical relevance have been suggested previously to estimate the
variance/DW factor of these centers as a linear combination of experimental nuclear
ADPs [29]/DW factors [10,30,31], but without providing the exact solution given
below.

3 Convolution of two-center Gaussian basis products

Within the LCAO-MO approach, the ED can be expressed as a linear combination of
basis function products:

ρ (r) =
N prims∑

i, j

Ci jχi (r) χ j (r) (7)

χi (r) = (x − Xi )
ni (y − Yi )

mi (z − Zi )
li Exp

[
−αi |r − Ri |2

]
(8)

where χi (r) is a (non-normalized) primitive Gaussian Type Orbital (GTO) centered at
Ri = (Xi , Yi , Zi ). The product of two primitive GTOs centered at (Xa, Ya, Za) and
(Xb, Yb, Zb) is also a GTO centered between the two [32].

Let a = (ax , ay, az) = (x − Xa, y −Ya, z − Za) have a normal trivariate PDF with
zero mean (〈a〉 = (0, 0, 0)) and covariance Uaa = {Cov

(
ai , a j

) = 〈āa〉} (where i, j
range over x, y, z), a 3 × 3 symmetric tensor, the ADPs of nucleus Ra . If b is likewise
defined with Ubb, then the displacement vector of the GTO at c defined by the product
of GTOs at a and b is

c = αa + βb
α + β

(9)
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where α and β are the exponents of the respective primitive GTOs of the product. The
covariance matrix of center c is

Ucc = 〈c̄c〉 = α2〈āa〉 + αβ
(〈āb〉 + 〈b̄a〉) + β2〈b̄b〉
(α + β)2

= α2Uaa + αβ (Uab + Uba) + β2Ubb

(α + β)2 (10)

where Uba = Ūab are the off-diagonal blocks of U representing the correlation
between the vibration of nuclei a and b. Eqn. 10 provides an exact representation
for the ADPs of a product of primitive GTOs. To reproduce a situation in which the
off diagonal blocks may be unknown, it is sufficient to set both Uab and Uba to zero.
The methods described in this section are implemented in the current version of the
Denprop [23] software package.

4 Results and discussion

The convolution formalism detailed above is applied to the LCAO-MO EDs of the
formamide and the octasulfur molecules at the B3LYP/6-311G** [33] and MP2/cc-
PVTZ [34] levels of theory, respectively, calculated at the equilibrium geometries using
the Gaussian09 program suite [22]. The MSDAs corresponding to a temperature of
23 K were derived from the harmonic vibration frequencies and normal modes at
the same levels of theory. The optimized geometries were obtained using the ‘very
tight’ convergence criteria leading to small frequencies for the external modes. For the
sake of simplicity, we imposed planarity for formamide, as this structure has been the
subject of a vibration-smearing study [35] based on Fourier expansion and external
ADPs. The lowest frequency (highest amplitude) mode is the NH2 wagging (ω(NH2))
that displaces all three atoms out of the molecular (XY) plane. Since we consider only
internal modes of vibration, the MSDA matrix has a rank of 3N-6. Nevertheless, the
block diagonal matrices (the ADPs) are positive definite (with condition number >8)
thus defining valid trivariate normal PDFs.

Two alternative dynamic EDs are evaluated for formamide. One is also a convoluted
ED but without correlations in the nuclear vibrations, that is, only the block diagonal
elements of the total MSDA matrix are included in the convolution (〈ρ(r)block〉T ).
This approach closely resembles the formalism used to model Bragg diffraction data
from which no covariance information can be retrieved. The other one is obtained
as an average over a large ensemble of static EDs (sample size; M = 5 · 105) gen-
erated by sampling the nuclear configuration space (using the nuclear PDFs due to
the B3LYP/6-311G** normal-modes) and mapping each member of this ensemble
onto a corresponding single-point electronic wave function. The sample mean of the
corresponding EDs

(
ρ(r) = M−1 ∑

ρi (r, Ri )
)

can be considered as the ‘correct’
thermal-average ED (within the time independent BO approach), since its evalua-
tion does not rely on the convolution approximation; each member of the ED set is
consistent with one and only one nuclear configuration [36].
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Fig. 1 Difference ED (〈ρ(r)〉T − ρ(r)) contur maps: (a, left) Formamide in the molecular plane, (b,
right) octasulfur in the plane defined by three S-atoms. Contour levels are ∓(0.01, 0.05, 0.25, 1.25)e/Å3,

solid/dotted lines are positive/negative

One of the striking results of this simulation is that the static and the related dynamic
EDs exhibit an overall fair agreement, except for the NH2 group of the formamide
molecule. Figure 1 displays difference ED contour maps (〈ρ(r)〉T − ρ(r)) in the
molecular plane of formamide (1a) and in the plane defined by three consecutive
S-atoms of the octasulfur molecule (1b). These maps well demonstrate the effect of
nuclear vibrations; charge migrations from near-nuclear regions towards internuclear
regions.

The BCP properties of the two EDs (Table 1) are very close in value. Even the
largest differences, obtained for the positive eigenvalues of the Hessian at the BCP
(λ3), remain below 10 % for bonds formed between massive atoms. However, no BCP
is found for any of the N–H bonds based on the dynamic EDs; neither for the convoluted
(〈ρ(r)〉T , 〈ρ(r)block〉T ) nor for the averaged (ρ̄). These results are consistent with those
found for the ‘experimental’ ED of trialanine [37] by the maximum entropy method
which reconstructs the dynamic ED from diffraction data without having resource to
any thermal smearing and static ED model.

On Fig. 2a the difference density (〈ρ(r)block〉T ) − 〈ρ(r)〉T ) in the plane of the for-
mamide molecule reveals that the independent nuclear vibration model (block diagonal
representation) is in a close agreement with that obtained by the correlated model using
the full MSDA. The maximum error is only 0.015 e/Å3, which occurs at the location
of the Nitrogen nucleus. Figure 2b shows the difference in (ρ(r) − 〈ρ (r)〉T ) where a
quantitative comparison highlights that the maximum absolute error for formamide is
only 1.45 e/Å3 found at the nucleus of the oxygen atom.

Figure 3 compares the Laplacian of the static (∇2ρ) and dynamic (∇2〈ρ(r)〉T )

EDs along the C=O (3a) and S–S (3b) bond paths. While a surprisingly good agree-
ment is found in the near-BCP region for both bonds (distances C-BCP = 0.4153 Å,
S-BCP=1.0297 Å), the residual functions (∇2〈ρ(r)〉T − ∇2ρ(r)) exhibit pronounced
differences in the vicinity of the valence-shell charge concentrations, especially for the
polar C=O bond. These findings correlate well with the experimental irreproducibil-
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Table 1 Topological Properties at BCPs of static and dynamic EDs of formamide and octasulfur (units are
in e and Å)

Bond Property Static ρ(r) Convolution 〈ρ(r)〉T Mean ρ̄(r)

C–H ρ 1.86 1.79 1.80

∇2ρ −22.58 −22.90 −23.39

λ1 −18.00 −16.55 −16.87

λ2 −17.57 −16.29 −16.57

λ3 12.99 9.94 10.05

C–N ρ 2.13 2.12 2.13

∇2ρ −21.09 −20.07 −20.15

λ1 −16.38 −16.22 −16.37

λ2 −14.91 −14.83 −15.11

λ3 10.20 10.98 11.33

C–O ρ 2.80 2.79 2.80

∇2ρ −5.20 −2.90 −2.63

λ1 −25.97 −25.76 −25.98

λ2 −24.25 −24.18 −24.40

λ3 45.03 47.05 47.74

S–S ρ 1.00 0.99

∇2ρ −2.69 −2.78

λ1 −4.04 −3.98

λ2 −4.00 −3.93

λ3 5.35 5.14

Fig. 2 Comparison of different dynamic EDs for Formamide: (a, left) the difference
between the convoluted EDs calculated with the full and block-diagonal MSDA matrix
(〈ρ(r)block 〉T − 〈ρ(r)〉T ), (b, right) the difference between the mean and the convo-
luted EDs (ρ̄(r) − 〈ρ(r)〉T ). Contour levels are at

{∓2n}
n=1,2,3 10−3,

{∓2n}
n=1,2,3 10−2,

{∓2n}
n=1,2,3 10−1 e

/
Å3, solid/dotted lines are positive/negative
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Fig. 3 The dynamic Laplacian with reference to that of the static (∇2〈ρ(r)〉T − ∇2ρ(r)) along (a, left)
the C=O bond for the formamide molecule and (b, right) the S–S bond in the octasulfur molecule. Unit is
e/Å5

ity of the profiles of C=O bonds [1] which might suggest incomplete decoupling of
thermal smearing effects and static density topology from X-ray structure factors [7].

5 Conclusion

A straightforward formalism is presented to calculate the dynamic molecular ED
from that of the stationary ED within the harmonic convolution approximation and
the LCAO-MO formalism utilizing Gaussian basis functions. In spite of its simplicity,
the method turns out to provide a very accurate estimation of the thermally smeared
ED (ρ̄) obtained by a more rigorous and computationally much more demanding
procedure that involves averaging over a large ensemble of single-point static EDs.
This is well substantiated by the closeness of the BCP values obtained for the two
dynamic EDs in Table 1. Even more surprisingly, the static and convoluted dynamic
EDs are also found to exhibit a high degree of similarity in terms of BCP properties.
However, for molecules containing hydrogen atoms, the two EDs do not necessarily
reveal a topological equivalence. The convoluted ED for the formamide molecule, for
example, exhibits no BCP for the N–H bonds because the hydrogen density peaks
(the (3,−3) critical points of the static ED) are completely ‘washed out’ by thermal
vibrations (became saddle points) even at such a low temperature as 23 K at which
only the ground vibration states are populated. This result is of significance to the
reliability of X-ray charge density based topological analyses of hydrogen bonds. The
majority of these studies rely on higher-temperature diffraction data (typically around
100K) and the data interpretation utilizes either isotropic temperature factors for the
H-atoms [38,39] or (preferably) ADPs from independent observations/calculations
[40,41], making thus the experimental static ED for both covalent and non-covalent
interactions involving H-atoms decisively model dependent. While this issue is quite
widely recognized, the invisibility of the N–H bond path for the convoluted theoretical
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ED, as shown in this study, indirectly implies that the results of topological analysis
of experimental EDs of bonding involving H-atoms is not just simply supported,
but entirely settled by the choice of the H-atom ADPs and mean positions. To be
more precise, the ‘experimental static’ topology of H-bonding is a manifestation of
parameters directly not observable by X-ray diffraction. To reach this conclusion
one should just consider what it would take to solve the inverse problem, that is, to
reconstruct fine topological details of the static ED for the N–H bonds from that of
the convoluted dynamic ED for formamide.

It is to be emphasized that our analysis is restricted to internal (intra-molecular)
vibrations of relatively high frequencies and thus low amplitudes. The inclusion of
external modes (translation and rotation within the molecular mean field model [42]) or
acoustic modes (within lattice dynamics [43]) is most likely to further demolish char-
acteristic features of the static topology. A more general conclusion is that smearing
the theoretical ED to compare it with the experimental ED deserves more attention
than it has received during the most recent X-ray charge density era. After all, the
molecular static ED is not a direct physical observable.
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